View Full Version : pain in elbow after deadlifts

04-15-2006, 12:47 PM
Ever since I started deadlifting I've had pain in my right elbow as soon as a few hours after deadlifting and usually lasting throughout the next day. It's always just the one elbow, and it's always the same pain. Some basic movements just create a sharp pain in the elbow once, and then I can sit there and do it over and over and over and it won't be painful...but then a minute later some different movement will cause pain. For some background I am ligament laxative in almost all of my joints so I don't know if that has anything to do with this...and it's been happening since I started DLing at ~135lbs and it seems to be the worst since I just pulled 285 last night, the pains started happening within 3 hours. Any one have ideas on what this is, or does anyone else get this?

04-15-2006, 01:10 PM
Are you bending your arms when you pull? If you are, don't. Your elbows should be straight and locked the whole time. Some people bend the elbows, this will lead to a lot of strian and leads to a lot of torn biceps. I really can't think of any other reason your elbows would be hurting.

04-15-2006, 01:12 PM
so drew, elbows should be locked all the way through the lift, even during the immediate pull from the floor? and for rack pulls should u do the same thing?

04-15-2006, 01:15 PM
Yes. Your elbows should never be bent at any point of any type of deadlift.

04-15-2006, 01:18 PM
Never bend, you risk tearing the bicep of the arm with the underhand .

04-15-2006, 01:38 PM
You are describing exactly the same problem I have and ironically I have no idea how to stop it. I would suggest visiting a doctor or some of the sites I will post at the bottom to better diagnose it.
Do you get the "sharp pain" while doing bench presses/tricep workouts too, or is it just after DLs?
My pain is actually in my left elbow and it was when I moved up the weight from 225 to 275, and I also don't get the pain at all when I am lifting. It only comes after when I am chillin' and my elbow isn't getting much support.
I seriously think that it has to do with when I was younger and my ***hole friends would punch me in the elbow to piss me off, but who knows.
Here are the sites:
From my experience (not much) it is very hard to diagnose an elbow injury and suggest that you visit a doctor, if that is an available option. Other than that I think you should probably try to rest for a bit or at least stay away from things that aggravate it.

BTW what is ligament laxative?

04-15-2006, 03:31 PM
sounds like we are having the exact same thing. I noticed the pains after benching too but very rarely, and I've never felt them while lifting anything.

ligament laxative is basically what most people refer to as "double jointed." But when it really means is your ligaments often arn't as tight as they should be, which can lead to problems like skelatol misalignment. Like a ligament on my right hip is loose that isn't on my left side, so when I lay down on my back relaxed my right foot will flop over to the outside, while the left stays up straight.

I thought it might be related to this if the weight is stretching and misaligning a lig in my elbow and the pain is it rubbing something since it's out of place, and it just takes some time to regain tension and put itself back to where it belongs.

04-15-2006, 04:25 PM
I thought it might be related to this if the weight is stretching and misaligning a lig in my elbow and the pain is it rubbing something since it's out of place, and it just takes some time to regain tension and put itself back to where it belongs.
I think you're right.
This injury has happened once before but I just took a break for a week and then went right back into the gym. This time around I have been off for around three weeks. Now that you have mentioned this; if I actually put my elbow at a 90 degree angle and flex my entire arm I will feel pain for about three seconds. Could this be because the ligament is re-aligning itself? After the three seconds the pain pretty much subsides. I think I am going to try some strengthening exercises while I take the time off with one of those rubber ropes and try to hit the gym on monday.

04-15-2006, 04:58 PM
Taken from: http://www.diagnose-me.com/cond/C136795.html random site I found that is promoting a diagnosing tool, the information seems good though.
Read up, and I put some notes at the bottom. There is also a glossary if there are any terms you want defines on the website above.

Ligaments are cable-like structures, which hold your bones together and allow you to walk and move without failing apart. Ligaments are flexible, but they do not stretch very far. Injuries - such as when you sprain a ligament, twist a knee, take a bad fall, suffer a whiplash, or lift an object which is too heavy - can tear or fray these cable-like structures. These injuries set up a healing process called inflammation to repair the injured ligament. You know this process is happening when you feel the pain, heat, note swelling, and cannot move the injured joint.

If the healing process is completely successful, then the ligaments will be returned to their normal strength and length, and you can return to your normal activities. If this healing process does not completely work, the ligaments may heal stretched. This "stretched out" ligament will lead to a situation which can cause pain and discomfort with movement.

When a ligament is "strained" or injured, some of the strands or threads which make up the cable become over-stretched and broken. The torn or strained ligament is really millions of tears of these strands which are molecules of collagen.

Loose ligaments allow the joint to move beyond its normal range of motion. The abnormal motion allowed by the strained ligament will produce painful sensations and make you aware of the problem. These sensations also include feelings of "numbness and tingling" and a phenomena of referred pain. This referred pain is created by the ligament laxity around a joint but is felt at some distance from the injured joint.

The abnormal joint movement also creates many protective actions by adjacent tissues. Muscles will contract in an attempt to pull the joint back to the correct location or stabilize it to protect it from further damage. We then feel the muscle spasms which are related to the ligamentous laxity.

There is a tendency to treat the muscle spasms as the primary cause of the problem and many medical treatments may be directed toward the muscular spasms, and not to the primary cause: the ligamentous strain. If the joint is slightly out of place because of the ligamentous laxity, it may respond to manipulative care. Such manipulative techniques will often give good relief and sometimes permanent relief.

If lax ligaments can lead to muscle spasm, loss of movement, and all sorts of painful sensations and feelings, what can be done? The only non-surgical treatment for this ligamentous strain or laxity problem is called prolotherapy. In order to understand prolotherapy, one must understand how the body heals ligament damage normally. This healing process is called inflammation.

Inflammation - Healing The Body
Inflammation has several distinct phases: the acute inflammation phase, the granulation phase, and the remodeling phase. This "Healing Cascade" is basic to all injuries regardless of the site or tissue. These three phases each have their own cellular and chemical processes and changes. Each phase is dependent upon the previous phase for initiation of the next step.

Understanding inflammation is key to gaining an insight into how prolotherapy works. The first phase is called acute inflammation and is about one hundred hours long. This step begins at the time of the injury, when the ligament and the adjacent cells are broken open and their contents spill at the wound site. The ligamentous and cellular debris and a number of chemicals in the fluid or plasma around the broken-open ceils attract an influx of white blood cells called leukocytes. Their job is to clean out the bacteria and prevent infection at the injury site. Many of the chemicals released during this phase will be broken down into messengers or chemical signals that tell cells to become active or inactive during this phase of inflammation. Some of these chemicals are called prostaglandin's, which can cause pain at the injury site.

The leukocytes also secrete hormones which attract an important cell called the "macrophage". The arrival of the macrophages at the injury site signals the beginning of the next phase in the healing process, the granulation phase. As the macrophages arrive at the injury site, they begin to "clean up" the area through a combination of digesting the broken-down cell parts and secreting enzymes, which break down many of the damaged ligament molecules. The macrophages also release a number of hormones which will bring more cells to the injury site.

The macrophages also release chemicals (growth factors) which stimulate the growth of new blood vessels, intercellular matrix, and the cells that will make new ligaments. These specialized cells which make ligaments are called fibroblasts. The fibroblasts will be responsible for the actual repairing of the sprained ligament. The combination of all of these cells and the new blood vessels being formed causes the thickness and fullness that can be felt at the injury site. The granulation phase will be present for ten days to two weeks.

Fibroblasts will find the site where the ligamentous structures attach to the bone: the fibro-osseous junction. The fibroblasts will be stimulated, or "turned on", to make new ligaments by chemicals and hormones that have been released by the incoming macrophage. When the fibroblasts are "turned on", they rapidly make massive amounts of the basic building blocks of ligaments: collagen.

The third phase of healing is called "wound contraction". During this phase, the new collagen deposited at the injury site will be organized into a new ligament. The fibroblasts make single long molecules which, when outside of the cell, will begin to entwine around each other, forming what we call a collagen fiber, which is a "triple helix" of these molecules. The individual molecules are held together by strong chemical bonds, As the collagen fibers wind around each other, they begin to contract and the molecules become shorter and tighter. Water is squeezed out (like squeezing a sponge), which also causes shrinkage. As the millions of collagen fibers lose water and shrink, the ends of the ligament will be slowly pulled together and the laxity will decrease. We can see this in the healing of a skin wound as the edges of the wound pull tightly together near the end of the healing process.

During the third phase of the healing process, all of the cells originally present to "clean up" the wound are recalled by the body. All that is left at the injury site are the fibroblasts which have been "turned on"and are secreting the collagen and other substances which will be used to increase the integrity of the injury site. The third phase of inflammation lasts for a number of weeks, and the "new ligament" tissue will not reach its maximum strength for several months.

Ligament Injection Therapy
Now that it is understood how inflammation works, we can really understand what we need to do to create inflammation. Ligament injection therapy simply stimulates this healing process in a more controlled and less violent way than occurs during trauma in an automobile accident, slip or fall, twist or athletic injury. The technique of creating this inflammation and the creation of collagen is done by injecting proliferants. Proliferants are nothing more than irritants. These irritants are enough to break open the surface of the cell walls and allow the spilling out of their contents into the immediate and adjacent tissue spaces near where the fibroblasts reside at the junction of the ligament and the bone. This then stimulates the healing cascade.

A number of different proliferants may be used which are capable of causing this process. Osmotic shock agents are dehydrating agents that remove the fluids from the cells around the injection site. In the modem Orthopaedic medicine practice, this osmotic shock agent is primarily a concentrated solution of glucose, glycerin, and a very small amount of phenol. It is called "P2G".

Sodium morrhuate is another frequently used proliferant. This drug is the same long fat molecule that makes up the cell wall. When injected in dilute amounts it stimulates the production of the prostaglandins or the chemical messengers of inflammation. Sodium morrhuate is extracted from cod liver oil and has the same chemical formula as arachidonic acid.

All of these proliferants are injected at the fibro-osseous junction with a large amount of local anesthetic, usually Procaine. The discomfort of prolotherapy, because it is an "artificial" injury, is an important signal that healing is under way. The pain, swelling, heat and the redness caused by the injections are all signs that the underlying cellular and chemical processes of 200 million years of evolution are safely underway. The body's pain signals can be listened to, and as the pain decreases the joint movement can increase.

Why is this secondary treatment needed? If this process is a natural on in the body, why did it not do the job correctly the first time? Medical physicians do not understand all the reasons. Some of the more likely causes are: initially, there was continued joint displacement following the injury and the ligament healed in the "longest possible length" position, the nutrition of the patient during healing was inadequate, the genetic tendencies to heal are not complete, or that the healing process was itself suppressed by such medications as aspirin.

Aspirin and other nonsteroidal anti-inflammatories (NSAID's) can knock out or surpress the healing response by interfering with the prostaglandin growth factor pathways. These drugs are frequently prescribed because they are thought to be safe and a conservative treatment modality. However, research has shown that aspirin is not without significant side-effects concerning inflammation. In addition to well-documented adverse effects this medication has upon healing in the stomach, they may directly inhibit the healing of injured ligaments.

Prolotherapy is not a new technique. Ligament injection therapy is 2,500 years old. Prolotherapy was first used by Hippocrates on Olympic javelin throwers who occasionally dislocated their shoulders. It was used to treat hernias before modern surgical techniques became available.

Prolotherapy is now gaining wider acceptance for painful musculoskeletal and ligamentous problems and has demonstrated long-lasting results.

The Safety Of Ligament Injection Therapy
Treatment with prolotherapy is not without risk. Since the intent of the technique is to create inflammation, pain, swelling, and redness the result can sometimes be more than anticipated. The injections are also painful because the placement of the needle at the fibro-osseous junction is also a tender site. Since the skin is broken with a needle, infection is a possibility, but very few infections have been reported. Serious complications are very rare. Deaths have been reported from prolotherapy, but not in the last 25 years.

Prolotherapy has proven a safe therapeutic technique in well trained hands, but is not easy to learn. The prolotherapist must have training in the form of workshops, apprenticeships, and be a true student of functional anatomy. Prolotherapy done by trained hands is an effective treatment method for the pain and dysfunction of ligament laxity.

I turned that part bold because this is something different I did this time rather than last time when it only took me one week to heal! I also iced my elbows a lot. This is probably what screwed me up dangit.

This seems right on for me. I guess I will go into the gym next week and get my ligaments inflammed! :idea: and then take another week off? :mad:
I'm also guessing that for the ligaments to fully heal unstretched they should be completely relaxed while going through the inflammation process? So your arms should be kept straight as much as possible? (I state them as questions because I have no idea if I am right or wrong; just a guess)

04-15-2006, 05:05 PM

04-15-2006, 11:10 PM
aaand less than 24 hours later it is completely gone now.

04-15-2006, 11:50 PM
i say tendonitis

04-16-2006, 12:48 PM
am I super human and recovering from an injury that usually takes 3-6 weeks to recover from in 24 hours?

04-17-2006, 10:18 AM
if you can bend your arms enough to put a strain on your biceps there is only one thing wrong. Put more weight on the bar and eliminate the problem.